Everything You Need To Know To Find The Best LED lighting projects

Author: Janey

Mar. 31, 2025

3

0

0

LEDs for Beginners : 9 Steps (with Pictures) - Instructables

LEDs for Beginners

3,758,248

Please visit our website for more information on this topic.

4,405

Introduction: LEDs for Beginners

About: I've worked for Instructables off and on since building and documenting just about everything I enjoy doing. I am now the Creative Programs founder and manager for Autodesk and just finished building out… More About noahw »

This instructable shows how to wire up one or more LEDs in a in a basic and clear way. Never done any work before with LEDs and don't know how to use them? Its ok, neither have I.

***If you have wired up LEDs before, this explanation might seem overly simplistic. Consider yourself warned.***

Step 1: Get Some LEDs

So I wasn't completely honest - I have used LEDs once or twice before for simple applications, but I never really knew what I was doing, and since so many projects on instructables use LEDs, I thought I might as well teach myself and post about it too.

I know that there are many projects already posted that contain information about how to wire LEDs for simple projects - LED Throwies, LED Beginner Project: Part 2 and 9v LED flashlight - teh best evarrr!, but I think that there could still be some use for a detailed step by step explanation about the basics of LEDs for anyone who could use it.

The first step was to buy some supplies and figure out what I would need to experiment with. For this project I ended up going to Radioshack because its close and a lot of people have access to it - but be warned their prices are really high for this kind of stuff and there are all kinds of low cost places to buy LEDs online.

To light up an LED you need at the very minimum the LED itself and a power supply. From what I have read from other LED instructables wiring in a resistor is almost always a good idea.

If you want to learn about what these materials are check out these wikipedia entries:
LEDs
Power supply
Resistors

Materials:

LEDs - I basically just reached into the drawer at Radioshack and pulled out anything that wasn't more than $1 or $2 per LED. I got:

5mm Red LED 1.7 V
5MM Yellow LED 2.1 V
Flasher Red LED 5 V
2 Pack Red LED 2.6 V
Jumbo Red LED 2.4V

Power Supply - I really didn't know what I would need to power them so I bought some 9V batteries and some 1.5V AA's. I figured that would allow me to mix and match and make enough different voltage combinations to make something light up - or at least burn those little suckers out in a puff of smelly plastic smoke.

Resistors - Again, I wasn't too sure what I would need in terms of resistors here either. Since I got a whole bunch of different LEDs with various voltages I knew that I would need a couple different types of resistors, so I just bought a variety pack of 1/2 Watt Carbon Film Resistors ().

I gathered up a soldering gun, solder, needle nose pliers, electrical pliers, some primary wire and electrical tape too since I thought they might be useful.

Step 2: The LED

LEDs come in different sizes, brightnesses, voltages, colors and beam patterns, but the selection at Radioshack is pretty small and so I just picked up a couple different LEDs from what they had in a few different brightnesses and voltages. I kept close track of what LED was what voltage because I didn't want to accidentally send too much current through one of the low voltage LEDs.

The first thing I did with the LEDs was figure out which wire (its called an electrode) was positive and which was negative. Generally speaking the longer wire is the positive electrode and the shorter wire is the negative electrode.

You can also take a look inside the LED itself and see whats going on. The smaller of the metal pieces inside the LED connects to the positive electrode and the bigger one is the negative electrode (see picture below). But be warned - in the LEDs I picked up I didn't always find this to be true and some of the LEDs had the longer electrode on the negative when it should be on the positive. Go figure - its OK though, if it didn't light up I just flipped it around.

Once I knew what was positive and what was negative I just had to remember what the voltage of each LED was.

All my LEDs recommended 20mA of current. 20mA is standard for most LEDs.





Step 3: Power Supply

To make the power supplies I just soldered some wire onto the ends of the batteries I had bought so that I could easily attach the LEDs to them. The 9V battery served as my 9V power supply, one AA battery made a 1.5V power supply and three AA batteries bundled together made a 4.5V (1.5V + 1.5V + 1.5V = 4.5V) power supply. I didn't use alligator clips on the ends of the wire, but they would have been helpful here.

Step 4: Resistors

I opened up the assortment pack to find that resistors aren't labeled with what value they are. The pack said it contained a whole bunch of different resistors from 100 ohms to 1 Meg ohm so I set out to see what was what. When I poked around online I found that all resistors have a coding system on them that tells you what value they are.

Here are two pages which explain in depth about how to calculate resistor values.

Do it yourself
or
Have it done for you

I'll go through the examples of how I calculated the values myself in the next few steps when I start wiring up my LEDs.

For the time being I just admired their little colored stripes and moved on to trying to get just one LED to light up.

Step 5: One LED, No Resistor

I thought that I would start as simply as I possibly could - just one LED with no resistor. First I had to decide what power source to use and which LED to light up. This may seem obvious, but this was my first time through so I might as well be as clear as possible...

LEDs require sufficient voltage to light them. Sometimes if you give them too little voltage they wont light at all, other times they will just shine dimly with low voltage. Too much voltage is bad and can burn out the LED instantaneously.

So ideally you would like the voltage of the LED to match the voltage of your power supply, or even be slightly less. To do this you can do a couple of things: change your power supply voltage, change the LED your using, or you can use a resistor that allows you use a higher voltage power supply with a lower voltage LED.

For now I just wanted to get one lit up so I chose my the power supply that had the lowest voltage - the single AA battery which outputs 1.5V.

I chose to light the red 1.7V LED since the battery outputs 1.5V and I knew I wouldn't kill the LED with too much power.

I wrapped my positive wire from the battery to the positive electrode of the LED and wrapped the negative wire from the battery to my negative electrode and presto - let there be LED light!

This first experiment was pretty easy to do - just some wire twisting and enough knowledge to know that the 1.5V power supply would light the 1.7V LED without need a resistor.

Step 6: One LED With a Resistor

It was just a coincidence that I bought an LED that was 1.7V and that it ended up working being able to be powered by my 1.5V power supply without the use of a resistor. For this second setup I decided to use the same LED, but up my power supply to the three AA batteries wired together which output 4.5V - enough power to burn out my 1.7V LED, so I would have to use a resistor.

To figure out which resistor to use I used the formula:
R = (V1 - V2) / I

where:
V1 = power supply voltage
V2 = LED voltage
I = LED current (usually 20mA which is .02A)

Now there are lots of calculators online that will do this for you - and many other instructables reference this as a good one, however, the math really isn't too hard and so I wanted to go through the calculation myself and understand whats going on.

Again, my LED is 1.7V, it takes 20mA (which is .02 A) of current and my supply is 4.5V. So the math is...

R = (4.5V - 1.7V) / .02 A
R = 140 ohms

Once I knew that I needed a resistor of 140 ohms to get the correct amount of voltage to the LED I looked into my assortment package of resistors to see if I could find the right one.

Knowing the value of a resistor requires reading the code from the color bands on the resistor itself. The package didn't come with a 140 ohm resistor but it did come with a 150 ohm one. Its always better to use the next closest value resistor greater than what you calculated. Using a lower value could burn out your LED.

To figure out the color code you basically break down the first two digits of the resistor value, use the third digit to multiply the first two by and then assign the fourth digit as an indicator of tolerance. That sounds a lot more difficult than it really is.

Using the color to number secret decoder website found here, a 150ohm resistor should have the following color code...

Brown because the first digit in the value resistor I needed is 1
Green because the fifth digit is 5
Brown because in order to get to 150 you have to add one 0 to 15 to get to 150.
Gold - the resistors I got all have 5% tolerance and 5% is represented by gold

Check out the decoder page link above if this isn't making sense.

I looked through all the resistors, found the one that was brown, green, brown, gold, and wired it in line on the positive electrode of the LED. (Whenever using a resistor on an LED it should get placed before the LED on the positive electrode).

Low and behold, the LED lit up once again. The 150 ohm resistor stopped enough of the 4.5V power supply from reaching the 1.7V LED that it lit up safely and kept it from burning out.

This is just the process that I went through to figure out what resistor to use with my particular LED with my particular power supply. You can easily use the formula above to figure out what value resistor to use with whatever LED and power source you happen to be using.

Step 7: Wiring Up Multiple LEDs in Series

Now that I knew how to wire one LED with various combinations of LED voltages and power supplies, it was time to explore how to light up multiple LEDs. When it comes to wiring more than one LED to a power supply there are two options. The first option is to wire them in series and the second is to wire them in parallel.

To see an in depth explanation about the difference between series and parallel check out this page. I'm going to cover wiring LEDs in series first.

LEDs wired in series are connected end to end (the negative electrode of the first LED connects to the positive electrode of the second LED and the negative electrode of the second LED connects to the positive electrode of the third LED and so on and so on...). The main advantage of wiring things in series is that it distributes the total voltage of the power source between all of the LEDs. What that means is that if I had a 12V car battery, I could power 4, 3V LEDs (attaching a resistor to each of them). Hypothetically this could also work to power 12, 1V LEDs; 6, 2V LEDs; or even 1 12V LED if such a thing existed.

Ok, let's try wiring 2, 2.6V LEDs in series to the 9V power supply and run through the math.

R = (9V - 5.2V) / .02A
R = 190 Ohms
Next higher resistance value - 200 Ohms

Now the variety package of resistors didn't come with a 190 or 200 Ohm resistor, but it did come with other resistors which I could use to make a 200 Ohm resistor. Just like LEDs, resistors can be wired together in either series or parallel (see next step for an explanation on wiring things together in parallel).

When same value resistors are wired together in series you add their resistance. When same value resistors are wired together in parallel you divide the value of the resistor by the number of resistors wired together.

So, in the most simplified sense, two 100 Ohm resistors wired together in series will equal 1 200 Ohm resistor (100 + 100 = 200). Two 100 Ohm resistors wired together in parallel will equal one 50 Ohm resistor (100 / 2 = 50).

Unfortunately, I learned this key point after I wired my resistors together for the experiment. I had originally wanted to wire two 100 Ohm resistors together to equal the 200 Ohms of resistance I needed to protect my LEDs. Instead of wiring them in series, as it should have been, I wired my resistors in parallel (did I mention I am beginner with resistors?) So my resistors were only providing 50 Ohms of resistance - which apparently worked out OK on my LEDs in the short duration of the experiment. Having too much power getting to the LEDs would probably burn them out in the long term. (Thanks beanwaur and shark500 for pointing this out.)

I took my resistors and placed them in front of the positive lead of the first LED that was wired in series and hooked them up to the battery and once again, there was LED light!

With three different combinations of LEDs and battery power supplies and no puffs of plastic smoke yet things were looking good - aside from my little confusion between wiring resistors in series and in parallel.

Step 8: Wiring Up Multiple LEDs in Parallel

Unlike LEDs that are wired in series, LEDs wired in parallel use one wire to connect all the positive electrodes of the LEDs your using to the positive wire of the power supply and use another wire to connect all the negative electrodes of the LEDs your using to the negative wire of the power supply. Wiring things in parallel has some distinct advantages over wiring things in series.

If you wire a whole bunch of LEDs in parallel rather than dividing the power supplied to them between them, they all share it. So, a 12V battery wired to four 3V LEDs in series would distribute 3V to each of the LEDs. But that same 12V battery wired to four 3V LEDs in parallel would deliver the full 12V to each LED - enough to burn out the LEDs for sure!

Wiring LEDs in parallel allows many LEDs to share just one low voltage power supply. We could take those same four 3V LEDs and wire them in parallel to a smaller power supply, say two AA batteries putting out a total of 3V and each of the LEDs would get the 3V they need.

In short, wiring in series divides the total power supply between the LEDs. Wiring them in parallel means that each LED will receive the total voltage that the power supply is outputting.

And finally, just some warnings...wiring in parallel drains your power supply faster than wiring things in series because they end up drawing more current from the power supply. It also only works if all the LEDs you are using have exactly the same power specifications. Do NOT mix and match different types/colors of LEDs when wiring in parallel.

OK, now onto to actually doing the thing.

I decided to do two different parallel setups.

The first one I tried was as simple as it could be - just two 1.7V LEDs wired in parallel to a single 1.5V AA battery. I connected the two positive electrodes on the LEDs to the positive wire coming from the battery and connected the two negative electrodes on the LEDs to the negative wire coming from the battery. The 1.7V LEDs didn't require a resistor because the 1.5V coming from the battery was enough to light the LED, but not more than the LEDs voltage - so there was no risk of burning it out. (This set up is not pictured)

Both of the 1.7V LEDs were lit by the 1.5V power supply, but remember, the were drawing more current from the battery and would thus make the battery drain faster. If there were more LEDs connected to the battery, they would draw even more current from the battery and drain it even faster.

For the second setup, I decided to put everything I had learned together and wire the two LEDs in parallel to my 9V power supply - certainly too much juice for the LEDs alone so I would have to use a resistor for sure.

To figure out what value I should use I went back to the trusty formula - but since they were wired in parallel there is a slight change to the formula when it comes to the current - I.

R = (V1 - V2) / I

where:
V1 = supply voltage
V2 = LED voltage
I = LED current (we had been using 20 mA in our other calculations but since wiring LEDs in parallel draws more current I had to multiply the current that one LED draws by the total number of LEDs I was using. 20 mA x 2 = 40 mA, or .04A.

And my values for the formula this time were:

R = (9V - 1.7V) / .04A
R = 182.5 Ohms

Again, since the variety pack didn't come with that exact value resistor I attempted to use the two 100 Ohm resistors bundled together in series to make 200 Ohms of resistance. I ended up just repeating the mistake that I made in the last step again though, and wired them together in parallel by mistake and so the two 100 Ohm resistors only ended up providing 50 Ohms of resistance. Again, these LEDs were particularly forgiving of my mistake - and now I have learned a valuable lesson about wiring resistors in series and in parallel.

One last note about wiring LEDs in parallel - while I put my resistor in front of both LEDs it is recommended that you put a resistor in front of each LED. This is the safer better way to wire LEDs in parallel with resistors - and also ensures that you don't make the mistake that I did accidentally.

The 1.7V LEDs connected to the 9V battery lit up - and my small adventure into LED land was completed.

Step 9: Extrapolation

While I didn't actually end up making anything besides a couple of lit LEDs, this information can be used to make all kinds of cool things!

The take away concepts hopefully were:
- Power a whole bunch of different value LEDs using the same basic principals.

- Figure out what is the positive electrode and what is the negative electrode of an LED by looking at it and testing it.

- Use resistors, or combinations of resistors wired together in series or in parallel to supply the correct amount of power to the LED.

- Make calculations to determine what resistor is needed using the formula, or using web sites that do it for you.

- Wire LEDs in series or in parallel depending on the application.

- Make LEDs light up!

This was the most basic kind of walk through for LEDs possible - and I learned a whole lot along the way. LED arrays and wiring schemes can get significantly more complicated - but for the most part, LEDs are pretty simple to work with, and with relatively little knowledge I was able to light them up - all be it if I sent a little too much juice through them towards the end of the experiment. I don't fear the LED now. They are my friends.

Everything about LEDs: Basics of High Power LED Lighting

LEDs are appropriate for many lighting applications, they are designed to produce a lot of light from a small form factor while maintaining fantastic efficiency. Here at LEDSupply, there are a variety of LEDs for all kinds of different lighting applications, the trick is knowing how to use them. LED technology is a tad different than other lighting that most people are familiar with. This post is here to explain everything you need to know about LED lighting: how to power LEDs safely so you get the most light and the longest lifetime possible.

What Exactly is an LED?

An LED is a type of diode that turns electrical energy into light. For those that don’t know, a diode is an electrical component that only works in one direction. Basically, an LED is an electrical component that emits light when electricity flows through in one direction, from the Anode (positive side) to the Cathode (negative side). LED is an acronym standing for ‘Light Emitting Diode’. Basically, LEDs are like tiny light bulbs, they just require a lot less power to light up and are much more efficient in producing high light outputs.

LED Types

In general terms, we carry two different types of LEDs:

5mm Through-Hole & Surface Mount.

5mm LEDs

5mm LEDs are diodes inside a 5mm diameter lens with two thin metal legs on the bottom. They are used in applications where a lower amount of light is required. 5mm LEDs also run at much lower drive currents, maxing out at around 30mA, whereas Surface Mount LEDs require a minimum of 350mA. All our 5mm LEDs are from top manufacturers and are available in a variety of colors, intensities, and illumination patterns. Through-hole LEDs are great for small flashlight applications, signage, and anything where you are using a breadboard as they can be used easily with their leads. Check out our guide to setting up 5mm LEDs for more info on these tiny light sources.

Surface Mount LEDs (SMD)

Surface Mount LEDs are diode(s) that can be placed on a substrate (circuit board) with a silicon dome over the diode to protect it (see Fig. 1). We carry high-power Surface Mount LEDs from industry leaders Cree and Luxeon. Both are excellent in our opinion, that is why we carry them after all. Some prefer one over the other but that comes with experience and knowing what to look for. Cree tends to have higher listed Lumen outputs and is a market leader in the High-Power LED sector. Luxeon, on the other hand, has excellent colors and thermal control.

High Power LEDs come as bare emitters (as seen in Fig. 1) or are mounted to a Metal Core Printed Circuit Board (MCPCB). The boards are insulated and contain conductive tracks for easy circuit connections. Our 20mm 1-Up and 3-Up starboard designs are the best sellers. We also offer QuadPod’s which can hold 4 high-power LEDs on a board slightly larger than the 20mm stars (see Fig. 2). All our high-power LED options can be built on a linear design as well. The LuxStrip can house 6 LEDs per foot and is easily connected up to 10 feet long.

Polarity Matters: Wiring LEDs

Electronic polarity indicates whether a circuit is symmetric or not. LEDs are diodes, therefore only allowing current to flow in one direction. When there is no current flow, there will be no light. Thankfully this means that if we wire an LED in backward, it will not burn the whole system up, it just won’t come on.

The positive side of the LED is the Anode and the negative side is the Cathode. Current flows from the anode to the cathode and never in the other direction, so it is important to know how to tell the anode and cathode apart. For surface mount LEDs this is easy as the connections are labeled, but for 5mm LEDs ook for the longer lead which is the anode (positive), take a look at Figure 3 below.

Color Options

One of the great things about LEDs is the different options and kinds of light you can get from them.

Optilux are exported all over the world and different industries with quality first. Our belief is to provide our customers with more and better high value-added products. Let's create a better future together.

Featured content:
How to Choose custom hospitality lighting?

White LEDs

Correlated Color Temperature (CCT) is the process of creating different white light at different temperatures. Color temperature is specified in degrees Kelvin (K), which is a temperature scale in which zero occurs at absolute zero and each degree equals one Kelvin. The lower temperatures from 3,000K to 4,500K tend to be warmer to neutral white. The higher temps 5,000K+ are the cool whites, also known as ‘daylight white’.

Color LEDs

For colors, what really matters is the wavelength in nanometers (nm). For certain applications, colors are needed for the visual effect, but sometimes certain wavelengths are needed for applications like curing, growing, reef tank lighting, and much more. See Fig. 4 for an idea of what wavelengths and temperatures produce certain colors.

We try to carry similar color temperatures and wavelengths for each brand and type of LED. You can always find the color or wavelength of our LEDs on the sub-section of the product page and can even search by color from our LEDs dropdown menu on the homepage. In white, we carry K, K, K, and K. As far as colors go, we carry from 400-660nm.

LED Brightness

LEDs are not only known for their colors, they are also a lot brighter than other light sources. Sometimes it is hard to tell how bright an LED will be because it is measured in Lumens. A Lumen is a scientific unit measuring luminous flux or the total amount of visible light from a source. Note that 5mm LEDs are usually listed in millicandelas (mcd). For 5mm LEDs, their viewing angle also affects the light output they give off, for more on that see here.

Why drive current matters…

The amount of light (Lumens) an LED emits depends on how much current is supplied. Current is measured in milliamps (mA) or amps (A). High-power LEDs can take currents from 350mA to mA. LEDs vary on their current ratings so be sure to keep track of this when picking an LED and driver.

Determining the Brightness

Now comes the tricky part, selecting the LED and driver combination that will output the light needed. We have done a lot of the groundwork here, in a post measuring the brightness of each high-power LED at different drive currents. Take note that these are measures for 1-Up stars so if you want more light the 3-Up LEDs are a good option as they are triple the light within the same footprint.

The above resource can always be used for determining the light output from an LED, but finding it manually is not very hard.

To do so, information is needed from the datasheet of the LED. On all of our LED pages, we link to the manufacturer’s datasheet at the bottom of the page.

Example: Finding brightness of Cree XP-L at mA

In this example, we are using the Cree XP-L. First, find the Flux Characteristics table (figure 5). We will touch on binning later which is labeled in the ‘Group’ column, but let us assume we are going to use a cool white XP-L from the highest bin (v5). The highlighted number is the typical flux @ mA which is the current the XP-L is measured at. To the right of that are the typical Lumen numbers for , , and mA drive currents.

For the sake of this example, say we want to run this LED with a mA BuckBlock LED driver and we need to find what the light output would be like. When driving an in-between drive current that is not listed, find the relative flux vs. current graph on the datasheet that looks like the graph to the right.

The arrow is the tested (base) output (at 100% relative flux). Following the curve to mA (?) we see that this is a 75% increase in light. Taking the 460 lumens from above and multiplying it by 1.75 we can see that the cool white XP-L running at mA gives off about 805 Lumens.

It may be hard to find the LED and Lumen output needed when switching to LEDs. This is due to the fact that light was always measured by the wattage of a bulb. LEDs have much better efficacy which makes it nearly impossible to measure in this way anymore as a 50 Watt LED will be significantly brighter than a 50 Watt Incandescent. In Figure 7 we show different incandescent bulbs and how many Lumens they give output. This helps give a better idea of the light to expect from an LED and if it will be as much as the old lighting.

Viewing Angle and Optics

Our 5mm LEDs have listed viewing angles for each so just search for one that will work for you. As far as our surface mount LEDs go, most of them give off a very wide angle at 125 degrees! Luckily, the LED starboards are compatible and easy to use with LED optics. These secondary optics are used to focus the light, they can reflect the light from an LED into spot, medium spot, wide spot, or elliptical and oval patterns.

As seen in Figure 8, 1-Up optics are cone-shaped and require an optic holder. In the case of our LED boards, optic holders have four legs that sit down into the grooves of the star. Triple LED stars are also compatible with Carclo optics, built with three holes in the board for the legs of the optic to fit in.

How to Power LEDs

LEDs are known for having the best efficacy out of all other light sources. Efficacy is the measure of how well a light source produces visible light, also described as Lumens per Watt. In other words, how much light are we getting for our watt of power? To find this, first, find out the wattage of the LED in use. In order to find watts, you need to multiply Forward Voltage (the voltage at which current starts to flow in the normal conducting direction) by drive current in Amps (note that it NEEDS to be in amps…not milliamps). Let’s take a look at the Cree XP-L 1-up LED as an example.

Say we are running this Cree XP-L at mA. From Figure 8 you can see that at this drive current the forward voltage is 3.15. So to find watts we multiply 3.15 (forward voltage) by 2 A (mA = 2 Amps) which comes out to be 6.3 Watts.

So now to find Efficacy, we just need to divide 742 Lumens (the tested amount of Lumens for this LED at mA) by 6.3 Watts. So the Efficacy (Lumens/watt) of this Cree XP-L is 117.8. This is great efficacy but also note Cree boasts that the XLamp XP-L LED has breakthrough efficacy of 200 lumens/watt running at 350mA. It is good to know that the efficacy goes down as you run more current to the LED as this increases heat which does make the LED a bit less efficient. Sometimes you will need to accept this if you need the LED to be very bright, but if you are wanting to get the best efficacy then you should run LEDs at a lower current. This is all helpful in determining how much power your applications will need as well as figuring out energy savings down the road.

A little bit more on LED drivers

This means that you need to find an LED driver that has the capability of driving LEDs at the current you need in order to get the amount of Lumens you’d like. An LED Driver is an electrical device that regulates the power to an LED or string(s) of LEDs. The driver responds to the changing needs of the LED by supplying a constant amount of power to the LED as its electrical properties change with the temperature. A good analogy in understanding this is that of a car on cruise control. As the car (LED) goes through hills and valleys (temperature changes), the cruise control (driver) makes sure it stays at a steady speed (light), regulating the gas (power) needed in doing so. The driver is so important because LEDs require very specific electrical power in order to operate properly. If the voltage supplied to the LED is lower than required, very little current runs through the junction, resulting in low light and poor performance. On the other hand, if the voltage is too great, too much current flows to the LED and it can overheat and be severely damaged or fail completely (thermal runaway). Always make sure you check the LEDs datasheet so you know what current is recommended to avoid these issues.

How much voltage do I need to light up an LED?

This is a common question asked and is actually pretty easy to figure out. All you need to know is your LED(s) forward voltage. If you have multiple LEDs in series then you need to take into account all the forward voltages combined, if you have a parallel circuit then you only need to take into account the forward voltage of how many LEDs you have per string. For more on wiring setups, see here. It is a good idea to keep at least a 2 volt overhead as some drivers (like the LuxDrive drivers) require this for the driver to work properly. So if your total forward voltage for a series circuit is 9.55, you should be safe with a 12V supply. For off-line drivers (AC input) just know the output voltage they are rated at and make sure you are covered, so an AC input driver with an output range of 3-12VDC would work for this application as well.

Heat Control

Finding the wattage of your system also helps you know more about the heat control you will need. Since these LEDs are high-power, they do create heat which can be very bad as you can learn here. Too much heat will make the LEDs produce less light as well as cut down on the lifetime. We always recommend using a heatsink and like to say to use about 3 square inches for every watt of LEDs. For larger wattages, I would recommend looking for a heatsink that is recommended for the number of watts you are running.

LED Binning & Quality

With the LED industry growing at a pretty rapid pace right now, it is important to understand the difference in LEDs out there. This is a common question as LEDs can range from very cheap to very expensive. I’d be careful in buying cheap LEDs as you always get what you pay for, yes the LEDs might work great at first but they usually tend not to last as long or will burn out fast because of poor testing.

All the LEDs carried here at LEDSupply are carefully selected. We only stock the best brands and color temperatures. Our vast experience in the industry has helped us learn the importance of quality manufacturing and binning of LEDs as well. In the manufacturing of LEDs, there is a variation of performance around average values in the technical datasheets. For this reason, manufacturers bin the LEDs for luminous flux, color, and forward voltage. We select the bins with the highest luminous flux (visible light) and lowest forward voltage, as this makes sure we have the LEDs with the best efficacy. A large amount of LED products are cheaply made and not documented correctly, which leads to many failed projects and then makes people think LEDs actually don’t last as long as they are said to. With our experience and buying power, we are able to offer the best products at reasonable prices.

Are you interested in learning more about LED lighting projects? Contact us today to secure an expert consultation!

Comments

Please Join Us to post.

0

0/2000

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us.

Your Name: (required)

Your Email: (required)

Subject:

Your Message: (required)

0/2000