A Brief Comparison between Flame Hardening and ...

Author: Morgan

Oct. 28, 2024

15

0

0

A Brief Comparison between Flame Hardening and ...

A Brief Comparison between Flame Hardening and Induction Hardening

Metals already boast tons of properties that make them beneficial for manufacturers. Some of their properties include excellent ductility, good conductivity of heat and electricity, and high tensile strength. They are likewise hard, lustrous, and resistant to elements.

Goto TY-induction to know more.

But to further improve the strength, malleability, ductility, and abrasion resistance of metals, they can undergo a wide array of heat treatment processes. Heat treatment is conducted by heating the metal workpieces before reaching their molten phase. They are then cooled in a controlled way, making sure that they acquire the needed mechanical properties.

Two heat treatment processes that metal workpieces can undergo are flame hardening and induction hardening. Understanding their differences can help business owners like you know the best heat treatment process for your metal workpieces.

Flame Hardening

Flame hardening is a surface hardening method wherein metal workpieces are exposed to a high-temperature flame before quenching them. Some metal workpieces that can undergo this surface hardening method are alloy steels, mild steels, cast iron, and medium carbon steels.

When carrying out flame hardening, the operator must utilise direct heat from oxy-gas flames to heat the metals until they reach their austenitizing temperature. Once this temperature has been reached, the surface of the materials will change while their core remains unchanged. The process of quenching must then be carried out upon reaching their austenitizing temperature, providing them with a harder surface that is more resistant to corrosion and wear. 

Remember, however, that the result of flame hardening will be determined by the flame temperature, heating duration and speed, quenching temperature, and elemental composition of the metal workpieces.

Induction Hardening

Induction hardening, on the other hand, is a surface hardening method that places metal workpieces inside a copper coil to heat them within or above their transformation temperature. The coil is utilised to generate an alternating current, inducing an alternating magnetic field to the workpieces to effectively heat their surfaces. After heating their surfaces, they are quenched to attain the needed alterations.

Some metal workpieces that can undergo induction hardening are carbon steels, alloy steels, stainless steels, cast iron, and ductile iron. Somehow similar to flame hardening, induction hardening can also enhance the surface of workpieces by increasing their wear resistance, surface hardness, and fatigue life. It does not likewise affect their core microstructure.

The output of induction hardening may depend on power level, dwell time, and other process variables. It can also be affected by the elemental composition of the metal workpieces.

Primary Differences

One key difference between flame hardening and induction hardening is that the latter does not operate in an open flame. Induction hardening only heats materials through a coil, making it more precise. It does not likewise generate scaling, decarburisation, and overheating damage. Flame hardening, however, can still be utilised in processing irregular workpieces. It also has lower equipment and maintenance costs than induction hardening.

To know more about these heat treatment processes, you can call us at Alpha Detroit Heat Treatment.

Optimized by: Netwizard SEO

Flame vs. Induction Hardening

Contents:


What Happens When Steel Is Heated?

Steel sheave undergoing flame hardening

When steel is heated, its internal structure changes, taking a cubic crystalline shape called austenite. This form of steel has a more open cell structure, allowing the metal to absorb more carbon. If allowed to cool slowly, this austenite releases the carbon slowly, and the metal regains its standard properties.


However, if the metal is cooled rapidly while in its austenitic form, the carbon does not have time to diffuse back into the surrounding metal structure. Instead, the carbon is trapped by the crystal structure, forming a needle-shaped crystal structure within the steel known as martensite. Martensite is a phase of steel that can be surface hardened or through hardened.


Carbon steel is a robust material that is already quite strong in its base state, but its ability to be altered to fit different applications is what makes it so essential to modern industry.


Once carbon steel has been cast or forged into a final product and cooled, flame or induction hardening will result in surface hardened steel.


Because the heat is applied at the surface without penetrating fully to the core of the steel, the resulting steel has a hard crystalline exterior, while the core retains the more ductile structure it was forged with.


High carbon steel is ideal for use cases involving repetitive work where mild steel would wear out too quickly under load, or through contact with abrasive or corrosive materials.


What&#;s the Difference Between Hardened Steel and Mild Steel?

You can read all about the types of steel and their strengths and weaknesses on our blog, but the difference in steel formulations comes down to strength vs hardness. Hardened steel is prone to cracking under pressure. In similar situations, mild steel will simply flex and return to its original shape unless exposed to sufficient pressure to bend the metal permanently. Mild steel is therefore a more appropriate fit for applications such as construction, where the ability to flex and sway may save a building from collapse in the event of an earthquake or gale force winds. Hardened steel in this situation would not bend, instead forming cracks in the structure, compromising the integrity of the building.


However, in an application such as sprocket manufacturing, surface hardened steel teeth create a wear-resistant surface that greatly extends the useable life of the sprocket, while the ductile core keeps the sprocket from fracturing under the pressure of shock loads and heavy, repetitive work.


What is Flame Hardening

Flame heating of a sprocket


Steel can be heated for hardening purposes using either flame or by induction heat. In flame hardening, a high-intensity flame is channeled through a torch or a custom rig that dissipates the flame across the surface of the steel until the metal is heated to a specified temperature. Correctly assessing the temperature of the steel is one of the skills of an experienced steelworker, and with experience can be done by eye.


This process can be applied to a targeted area, such as the wear surface of a sprocket tooth, to harden only the required areas, retaining the resilience of the steel while extending the life of working surfaces.


Because the flame requires time to heat the metal, sometimes taking up to a half hour or more to heat a large surface, the underlying metal is heated as well, but to a lesser degree, alongside the surface. This restricts the minimum depth that flame hardening can achieve. Because of this, flame hardening is ideal for applications requiring a hardness depth of 1.5mm (1/16&#;) or more.


Advantages of Flame Hardening

  1. Can be used to harden steel of any shape, including irregular or small items

    If you are looking for more details, kindly visit induction hardening machines.

  2. Targeted flame can harden select parts while leaving others ductile

  3. Hardness can be achieved on the surface or deep within steel

  4. Cost effective for small batch, compared to making an induction hardening setup

  5. Can be scaled up to achieve hardness on large items

Disadvantages of Flame Hardening

  1. Slower than induction hardening

  2. Difficult to achieve hardness depth <1.5mm

  3. Requires skilled steelworker to accurately assess heat and depth

  4. Overheating can result in brittle steel, or other unwanted results

  5. Cost is not competitive with induction at scale

  6. Open flame not permissible in some work environments


What Is Induction Hardening?

Induction hardening a sprocket tooth. Copper heating coil and water quenching pictured.

Induction hardening is a much quicker process than flame hardening. Induction involves shaping a highly conductive water-cooled copper coil around an object, and running an electrical current through it. This creates an electromagnetic field within the the coil. When a steel part, such as a sprocket tooth, enters the field, eddy currents are produced in the steel. These currents flow against the natural electrical resistance of the metal, causing it to heat up rapidly.


Advantages of Induction Hardening

Since the intensity of the current can be easily adjusted, heating steel with induction happens in seconds instead of minutes, applying heat evenly across the surface of the steel that is within range of the copper coil.


Once fabricated, this same induction setup can be used repeatedly with items of the same shape, making it ideal for hardening items in batches.


Disadvantages of Induction Hardening

The setup cost involved with induction is higher than a typical flame hardening setup, as each different item to be hardened will require a bespoke copper coil to be fabricated in a way that completely surrounds the surface to be hardened.


Additionally, because the induction coil must be bent to match the contours of the steel surface, the complexity of shape appropriate for induction hardening is restricted to fairly straightforward profiles.


Flame vs Induction Hardening Summary

Flame Hardening

Induction Hardening

Steel is heated using oxy-acetylene flame, or other high intensity flame

Steel is heated using a/c current passed through an induction coil

Temperature is gauged and controlled by the operator

Temperature is easily regulated by digitally controlling voltage

Heating is gradual, may require holding period

Heating happens quickly

Most effective for individual items or small batches

Work is easily automated and replicated at scale

Not effective for hardening depth less than 1/16&#;

Can be used to create ultra-shallow hardened layer, <1/16&#;

Low equipment and maintenance cost

High equipment and maintenance cost

Appropriate for targeted application, flat or very large surfaces

More difficult to use on isolated surfaces, or in very large applications

Can be used on items with irregular shape

Best used on items with basic shape

Requires skilled labor

Can be done by unskilled labor

Cost effective when small quantity required

Cost effective at scale

Overheating can result in damage due to warping, scaling, and decarburization

Easy to avoid damage due to finely attuned heat

Common Applications:

  • Large engineered sprockets

  • Drum sprockets

  • Wear plates

Common Applications:

  • Roller chain sprockets

  • Cable sheaves and pulleys

  • Gears

Control variables:

  • Gas flow

  • Distance between flame and surface

  • Time under heat

Control variables:

  • Frequency of a/c current

  • Resistance of metal composition

  • Time under heat

  • Shape and quantity of copper induction coil

 

Still unsure about what material and hardness will be the best for your application? Give us a call. Our qualified engineers and technicians will make sure you end up with the right solution for your application.

For more information, please visit industrial induction heater.

Comments

Please Join Us to post.

0

0/2000

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us.

Your Name: (required)

Your Email: (required)

Subject:

Your Message: (required)

0/2000